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Abstract 

Computer vision needs suitable methods of shape representation and contour 
reconstruction. One of them, invented by the author and called method of 
Hurwitz-Radon Matrices (MHR), can be used in representation and 
reconstruction of shapes of the objects in the plane. Proposed method is based 
on a family of Hurwitz-Radon (HR) matrices. The matrices are skew-symmetric 
and possess columns composed of orthogonal vectors. Shape is represented by 
the set of nodes. It is shown how to create the orthogonal and discrete OHR 
operator and how to use it in a process of shape representation and 
reconstruction. MHR method is interpolating the curve point by point without 
using any formula or function. 

 
 
1. INTRODUCTION 
 

Significant problem in machine vision and computer vision [1] is that of appropriate shape 
representation and reconstruction. Classical discussion about shape representation is based on 
the problem: contour versus skeleton. This paper is voting for contour which forms boundary 
of the object. Contour of the object, represented by contour points, consists of information 
which allows us to describe many important features of the object as shape coefficients [2]. In 
the paper contour is dealing with a set of curves. Curve modeling and generation is a basic 
subject in many branches of industry and computer science, for example in the CAD/CAM 
software. 

The representation of shape can have a great impact on the accuracy and effectiveness of 
object recognition [3]. In the literature, shape has been represented by many options including 
curves [4], graph-based algorithms and medial axis [5] to enable shape-based object 
recognition. Digital curve (open or closed) can be represented by chain code (Freeman’s code). 
Chain code depends on selection of the started point and transformations of the object. So 
Freeman’s code is one of the method how to describe and to find contour of the object. Analog 
(continuous) version of Freeman’s code is the curve α - s. Another contour representation and 
reconstruction is based on Fourier coefficients calculated in Discrete Fourier Transformation 
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(DFT). These coefficients are used to fix similarity of the contours with different sizes  
or directions. If we assume that contour is built from segments of a line and fragments of 
circles or ellipses, Hough transformation is applied to detect contour lines. Also geometrical 
moments of the object are used during the process of object shape representation [6]. Proposed 
MHR method requires to detect specific points of the object contour, for example in 
compression and reconstruction of monochromatic medical images [7]. Contour is also applied 
in shape decomposition [8]. Many branches of medicine, for example computed tomography 
[9], need suitable and accurate methods of contour reconstruction [10]. Also industry and 
manufacturing are looking for methods connected with geometry of the contour [11]. So 
suitable shape representation and precise reconstruction or interpolation [12] of object contour 
is a key factor in many applications of computer vision. 
 
2. Contour Points Based Shape Representation 

 
Shape can be represented by object contour, i.e. curves that create each part of the contour. 

One curve is described by the set of nodes (xi,yi) ∈ R2 (contour points) as follows in proposed 
method: 

1. nodes (interpolation points) are settled at local extrema (maximum or minimum) of 
one of coordinates and at least one point between two successive local extrema; 

2. each node (xi,yi) is monotonic in coordinates xi or yi (for example equidistance in one 
of coordinates); 

3. one curve (one part of the contour) is represented by at least five contour points. 
Condition 1 is done for the most appropriate description of a curve. So we have n curves 

C1, C2, ... Cn that build whole contour and each curve is represented by nodes according to 
assumptions 1-3. 
 

 
 

Fig. 1. Contour consists of three parts (three curves and their nodes) 
 

Fig.1 is an example for n = 3: first part of contour C1 is represented by nodes monotonic in 
coordinates xi, second part of contour C2 is represented by nodes monotonic in coordinates yi 
and third part C3 could be represented by nodes either monotonic in coordinates xi or 
monotonic in coordinates yi. Number of curves is optional and number of nodes for each curve 
is optional too (but at least five nodes for one curve). Representation points are treated as 
interpolation nodes. How accurate can we reconstruct whole contour using representation 
points? The shape reconstruction is possible using novel MHR method. 
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3. SHAPE RECONSTRUCTION VIA MHR METHOD 
 

The following question is important in mathematics and computer sciences: is it possible 
to find a method of curve interpolation in the plane without building the interpolation 
polynomials and without mathematical form of the curve? Our paper aims at giving the 
positive answer to this question. There exists several well established methods: spline functions 
[13], shape-preserving techniques [14], subdivision algorithms [15], Bezier curves, B-splines, 
NURBS [16] and others [12] to overcome difficulties of polynomial interpolation, but matrix 
interpolation MHR (based on simple matrix calculations with low computational costs) seems 
to be quite novel in the area of shape reconstruction. In comparison MHR method with Bézier 
curves, Hermite curves and B-curves (B-splines) or NURBS one unpleasant feature of these 
curves must be mentioned: small change of one characteristic point can make big change of 
whole reconstructed curve [17]. Such a feature does not appear in MHR method [18]. Methods 
of curve interpolation based on classical polynomial interpolation: Newton, Lagrange or 
Hermite polynomials and spline curves which are piecewise polynomials [19]. Classical 
methods are useless to interpolate the function that fails to be differentiable at one point, for 
example the absolute value function f(x) = xat x = 0. If point (0;0) is one of the interpolation 
nodes, then precise polynomial interpolation of the absolute value function is impossible. Also 
when the graph of interpolated function differs from the shape of polynomials considerably, for 
example  f(x) = 1/x, interpolation is very hard because of existing local extrema of polynomial. 
Lagrange interpolation polynomial for function f(x) = 1/x and nodes (5;0.2), (5/3;0.6), (1;1), 
(5/7;1.4), (5/9;1.8) has one minimum and two roots. 

 

 
 

Fig. 2. Lagrange interpolation polynomial for nodes (5;0.2), (5/3;0.6), (1;1), (5/7;1.4), (5/9;1.8) 
differs extremely from the shape of function f(x) = 1/x 
 

We cannot forget about the Runge’s phenomenon: when interpolation nodes are 
equidistance then high-order polynomial oscillates toward the end of the interval, for example 
close to -1 and 1 with function f(x) = 1/(1+25x2) [20] or f(x) = 1/(1+5x2). Method of Hurwitz  
– Radon Matrices (MHR), described in this paper, is free of these bad features. Complexity of 
calculations for one unknown point in Lagrange or Newton interpolation based on n nodes is 
connected with the computational cost of rank O(n2). Complexity of calculations for L 
unknown points in MHR interpolation based on n nodes is connected with the computational 
cost of rank O(L) [18]. This is very important feature of MHR method. The curve or function 
in MHR method is parameterized for value α ∈ [0;1] in the range of two or more successive 
interpolation nodes. 
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3.1. The Operator of Hurwitz – Radon 
 
Adolf Hurwitz (1859-1919) and Johann Radon (1887-1956) published the papers about 

specific class of matrices in 1923, working on the problem of quadratic forms. Matrices Ai, 
i = 1,2…m satisfying 

AjAk+AkAj = 0,      Aj
2 = -I     for     j ≠ k; j, k = 1,2...m 

 
are called a family of Hurwitz - Radon matrices. A family of Hurwitz - Radon (HR) matrices 
has important features [21]: HR matrices are skew-symmetric (Ai

T = - Ai) and reverse matrices 
are easy to find (Ai

-1 = - Ai). Only for dimension N = 2, 4 or 8 the family of HR matrices 
consists of N - 1 matrices. For N = 2 there is one matrix: 
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For N = 4 there are three HR matrices with integer entries: 
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For N = 8 we have seven HR matrices with elements 0, ±1 [7]. So far HR matrices are applied 
in electronics [22]: in Space-Time Block Coding (STBC) and orthogonal design [23], also in 
signal processing [24] and Hamiltonian Neural Nets [25]. 

If one curve is described by a set of representation points {(xi,yi), i = 1, 2, …, n} 
monotonic in coordinates xi, then HR matrices combined with identity matrix IN are used to 
build an orthogonal and discrete Hurwitz - Radon Operator (OHR). For nodes (x1,y1), (x2,y2) 
OHR M of dimension N = 2 is constructed [26]: 
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Matrix M in (1) is found as a solution of equation: 
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For nodes (x1,y1), (x2,y2), (x3,y3), (x4,y4), monotonic in xi, OHR of dimension N = 4 is 
constructed [26]: 
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where                   
443322110 yxyxyxyxu +++= ,   

344312211 yxyxyxyxu −++−= , 

241342312 yxyxyxyxu ++−−= ,  
142332413 yxyxyxyxu +−+−= . 

 
Matrix M in (3) is found as a solution of equation: 
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For nodes (x1,y1), (x2,y2), …, (x8,y8), monotonic in xi, OHR of dimension N = 8 is built [26] 
similarly as (1) or (3). Note that OHR operators M (1)-(3) satisfy the condition of interpolation 
 
                                                    M⋅x = y                                                                                   (5) 

 
for x = (x1,x2…,xN)T ∈ RN, x ≠ 0, y = (y1,y2…,yN)T ∈ RN, N = 2, 4 or 8. 

If one curve is described by a set of nodes {(xi,yi), i = 1, 2, …, n} monotonic in coordinates 
yi, then HR matrices combined with identity matrix IN are used to build an orthogonal and 
discrete reverse Hurwitz - Radon Operator (reverse OHR) M-1. If matrix M in (1)-(3) has form: 
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where matrix D with elements u1, …, uN-1 and zero diagonal, then reverse OHR M-1 is given by: 
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Note that reverse OHR operator (6) satisfies the condition of interpolation    
 
                                                              M-1⋅y = x                                                                       (7) 
 
for x = (x1,x2…,xN)T ∈ RN, y = (y1,y2…,yN)T ∈ RN, y ≠ 0 , N = 2, 4 or 8. 
 
3.2. MHR method (basic version) 
 

Key question looks as follows: how compute coordinates of points settled between 
interpolation nodes? A set of nodes is the only information about curve in basic version of 
MHR method. On a segment of a line every number “c” situated between “a” and “b” is 
described by a linear (convex) combination c = α ⋅ a + (1 - α) ⋅ b for 
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When the nodes are monotonic in coordinates xi, average OHR operator M2 of dimension 
N = 2, 4 or 8 is constructed as follows [7,26]: 
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with the operator M0 built (1)-(3) by “odd” nodes (x1=a,y1), (x3,y3), …, (x2N-1,y2N-1) and M1 built 
(1)-(3) by “even” nodes (x2=b,y2), (x4,y4), …, (x2N,y2N). Having the operator M2 for coordinates 
xi < xi+1 it is possible to reconstruct the second coordinates of points (x,y) in terms of the vector 
C defined with 
 
                                              ci = α⋅x2i-1+ (1-α)⋅x2i     ,    i = 1, 2,…, N                                    (10) 
 
as C = [c1, c2,…, cN]T. The required formula is similar to (5): 
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in which components of vector Y(C) give the second coordinate of the points (x,y) 
corresponding to the first coordinate, given in terms of components of the vector C. On the 
other hand, having the operator M2

-1 for coordinates yi < yi+1 it is possible to reconstruct the 
first coordinates of points (x,y) [7,26]:  
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Contour of the object is constructed with several number of curves. Calculation of 

unknown coordinates for contour points using (8)-(12) is called by author the method of 
Hurwitz - Radon Matrices (MHR). Here is the application of basic MHR method for functions 
f(x) = 2/x (five nodes equidistance in first coordinate: x = 0.4, 0.7, 1.0, 1.3, 1.6) and 
f(x) = 1/(1+5x2) with five nodes for x = -1, -0.5, 0, 0.5, 1. 
 

a)              b)    
 

Fig. 3. Thirty six interpolated points of functions f(x) = 2/x (a) and f(x) = 1/(1+5x2) (b) using 
basic MHR method with 5 nodes 

 
Basic version of MHR method preserves monotonicity and symmetry (Fig.3b) of the graphs. 
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3.3. MHR method with parameter k 
 

The curve y = 2/x reconstructed by basic version of MHR method (Fig.3a) looks not quite 
accurate. For better reconstruction of the curve, appropriate k ∈ (0;2] in MHR method with 
parameter k is calculated: 
                                              102 )1( MMM kk ⋅−+⋅= αα                                                  (13) 
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For k = 1 MHR method (13-14) presents a basic version (9,12). In the case of k > 2 author’s 
experiments confirm that models differ from the curves considerably. Choice of parameter k is 
connected with comparison of precise values wi for function f(x) = 2/x in control points pi, 
situated in the middle between interpolation nodes (α = 0.5): 
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and values in control points pi computed by MHR method. Control points are settled in the 
middle between interpolation nodes, because interpolation error of MHR method is the biggest 
[6]. Choice of rank k is done by criterion: difference between precise values wi and values 
reconstructed by MHR method is the smallest. Control points pi in this example are established 
for pi = 0.55, 0.85, 1.15, 1.45. Four values of the curve are compared for various parameter 
k ∈ (0;2]. The best result is calculated for k = 1.565: 

, 

whereas basic version  (k = 1) gives worse result: 

. 

Reconstruction of the curve y = 2/x by MHR method (13) with parameter k = 1.565 looks as 
follows: 

 
 

Fig. 4. The curve y = 2/x modeled via MHR method for k = 1.565 and five nodes together with 
36 reconstructed points 

 
Fig.4 represents the curve y = 2/x more precisely then Fig.3a. Convexity of reconstructed 

curve is very important factor in MHR method. Appropriate choice of parameter k is connected 
with regulation and controlling of convexity: model of the curve (Fig.4) preserves 
monotonicity and convexity.  
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3.4. MHR method for equidistance nodes 
 

Assume that there is odd number of interpolation nodes (x1,y1), (x2,y2),…, (x2k+1,y2k+1) in 
MHR method (k = 2,3,4…, k = const.) and all coordinates xi or all coordinates yi are 
equidistance (a fixed step of coordinates xi or yi). For example dealing with coordinate xi we 
have the condition of proportion for first and second half of nodes (N = 2): 
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Values p1 > ...> pk-1 ∈ (0;1) with p0 = 1 and pk = 0 are crucial in the process of interpolation. 
Let Mi (i = 0,1,2,…,k) is OHR operator of dimension N = 2 constructed (1) for nodes (xi+1,yi+1) 
and (xk+i+1,yk+i+1). Average OHR operator Mk+1 is built as follows: 
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Average OHR operator M2 in basic version (9) is calculated as (16) for k = 1 and p1 = 0. 
Coefficients si are computed: 
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for any coordinate c1 situated between x1 and xk+1 (first half of nodes) as follows: 
 

c1 = α⋅x1+β⋅xk+1      for           0 ≤ β = 1 - α ≤ 1, 
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Vector of second coordinates Y(C) = [y(c1), y(c2)]

T is calculated: 
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Here is the example of average operator (16) for five nodes equidistance in coordinate xi: 
(x1,y1), (x2,y2),…, (x5,y5), k = 2, p2 = 0, p1 = ½, p0 = 1. 
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Here is the application of MHR method with equidistance nodes for function f(x)= 1/x and nine 
nodes equidistance in second coordinate: y = 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8. 

 
Fig. 5. Twenty two interpolated points of function f(x) = 1/x using  MHR method with 9 

equidistance nodes 
 

MHR method for equidistance nodes requires the coefficients si (17) that are computed in 
similar way like Lagrange interpolation polynomial. 
 
4. SHAPE COEFFICIENTS 
 

Some of shape coefficients in object recognition are calculated using area of the object S 
and length of the contour L. For example: 
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Area S is also applied in coefficients of: Blair-Bliss, Danielsson, compactness [27].  
The contour is divided into n curves C1, C2, ... Cn. Having nodes (x1,y1), (x2,y2),…, (xm,ym) 

for each Ci in MHR method, it is possible to compute as many curve points as we want for any 
parameter α ∈ [0;1]. Assume that k is the number of reconstructed points together with m 
nodes.  
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So curve Ci consists of k points which are indexed (x1’ ,y1’), (x2’,y2’),…, (xk’,yk’ ), where 
(x1’,y1’) = (x1,y1) and (xk’,yk’) = (xm,ym). The length of curve Ci, consists of k points, is 
estimated: 
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Length of whole contour L is computed: 
 
                                                L = d(C1) + d(C2) + … + d(Cn).                                                (21) 
 
For example precise length of curve in Fig.3a is 4.045 and length calculated via (20) is 
d(C1) = 4.050. Precise length of curve in Fig.3b is 2.679 and length calculated via (20) is 
d(C2) = 2.643. 

Area of the object can be divided horizontally or vertically into the set of l polygons: 
triangles, squares, rectangles, trapezoids. 

 
Fig. 6. The object area consists of polygons 

Coordinates of corners for each polygon Pi are calculated by MHR method and then it is easy 
to estimate the area of Pi. For example P1 as trapezoid (Fig.7) with corners (x1,y1), (x1,y2), 
(x2,y3), (x2,y4). Area of trapezoid P1 is computed: 
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Fig. 7. Trapezoid as a part of the object. 
 

Estimation of object area S is given by formula: 
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Contour points, calculated by MHR method [18], are applied in shape coefficients. 
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5. CONCLUSIONS 
 

The method of Hurwitz-Radon Matrices leads to contour interpolation and shape 
reconstruction depending on the number and location of representation points. No 
characteristic features of curve are important in MHR method: failing to be differentiable at 
any point, the Runge’s phenomenon or differences from the shape of polynomials. These 
features are very significant for classical polynomial interpolations. MHR method gives the 
possibility of reconstruction a curve consists of several parts, for example closed curve 
(contour). The only condition is to have a set of nodes for each part of a curve or contour 
according to assumptions in MHR method. Shape representation and curve reconstruction by 
MHR method is connected with possibility of changing the nodes coordinates and 
reconstruction of new curve or contour for new set of nodes, no matter what shape of curve or 
contour is to be reconstructed. Main features of MHR method are: accuracy of shape 
reconstruction depending on number of  nodes and method of choosing nodes; reconstruction 
of curve consists of L points is connected with the computational cost of rank O(L) [18]; MHR 
method preserves monotonicity and symmetry of the graphs, but convexity not always 
(selection of parameter k). 

Future works are connected with: geometrical transformations of contour (translations, 
rotations, scaling)- only nodes are transformed and new curve (for example contour of the 
object) for new nodes is reconstructed, possibility to apply MHR method to three-dimensional 
curves [26] and connection MHR method with object recognition. 
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