shape representation, curve interpolation, cont@gaonstruction, shape coefficients,
Hurwitz-Radon matrices

Dariusz JAKOBCZAK

APPLICATION OF HURWITZ — RADON MATRICES
IN SHAPE REPRESENTATION

Abstract

Computer vision needs suitable methods of shapeseptation and contour
reconstruction. One of them, invented by the authod called method of
Hurwitz-Radon Matrices (MHR), can be used in reprgation and
reconstruction of shapes of the objects in the @ldProposed method is based
on a family of Hurwitz-Radon (HR) matrices. The nicat are skew-symmetric
and possess columns composed of orthogonal ve&bepe is represented by
the set of nodes. It is shown how to create theogdnal and discrete OHR
operator and how to use it in a process of shappregentation and
reconstruction. MHR method is interpolating the vaupoint by point without
using any formula or function.

1. INTRODUCTION

Significant problem in machine vision and compuwtsion [1] is that of appropriate shape
representation and reconstruction. Classical dssonsabout shape representation is based on
the problem: contour versus skeleton. This papeoigg for contour which forms boundary
of the object. Contour of the object, representgcchntour points, consists of information
which allows us to describe many important featufethe object as shape coefficients [2]. In
the paper contour is dealing with a set of cun@sve modeling and generation is a basic
subject in many branches of industry and computemnse, for example in the CAD/CAM
software.

The representation of shape can have a great ingpattte accuracy and effectiveness of
object recognition [3]. In the literature, shape b&en represented by many options including
curves [4], graph-based algorithms and medial g% to enable shape-based object
recognition. Digital curve (open or closed) carr&gresented by chain code (Freeman’s code).
Chain code depends on selection of the startect pmid transformations of the object. So
Freeman'’s code is one of the method how to desaribeto find contour of the object. Analog
(continuous) version of Freeman'’s code is the carves. Another contour representation and
reconstruction is based on Fourier coefficientgwated in Discrete Fourier Transformation
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(DFT). These coefficients are used to fix similaritf the contours with different sizes
or directions. If we assume that contour is buitini segments of a line and fragments of
circles or ellipses, Hough transformation is applie detect contour lines. Also geometrical
moments of the object are used during the prockesbject shape representation [6]. Proposed
MHR method requires to detect specific points oé tbbject contour, for example in
compression and reconstruction of monochromaticicakdnages [7]. Contour is also applied
in shape decomposition [8]. Many branches of maedicfor example computed tomography
[9], need suitable and accurate methods of conteconstruction [10]. Also industry and
manufacturing are looking for methods connectechvwgeometry of the contour [11]. So
suitable shape representation and precise recotistrwr interpolation [12] of object contour
is a key factor in many applications of computesios.

2. Contour Points Based Shape Representation

Shape can be represented by object contour, reesthat create each part of the contour.
One curve is described by the set of nodeg)(C R? (contour points) as follows in proposed
method:

1. nodes (interpolation points) are settled at loodiegna (maximum or minimum) of

one of coordinates and at least one point betwersticcessive local extrema;

2. each nodex,y) is monotonic in coordinates or y; (for example equidistance in one

of coordinates);

3. one curve (one part of the contour) is represebyeat least five contour points.

Condition 1 is done for the most appropriate desiom of a curve. So we havecurves
Cy, C,, ... C, that build whole contour and each curve is represkby nodes according to
assumptions 1-3.
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Fig. 1. Contour consists of three parts (three &siand their nodes)

Fig.1 is an example fan = 3: first part of contouC, is represented by nodes monotonic in
coordinatess, second part of conto@, is represented by nodes monotonic in coordingtes
and third partC; could be represented by nodes either monotonicoordinatesx; or
monotonic in coordinateg. Number of curves is optional and number of nddegach curve

is optional too (but at least five nodes for onevelt Representation points are treated as
interpolation nodes. How accurate can we reconstwole contour using representation
points? The shape reconstruction is possible usivgl MHR method.
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3. SHAPE RECONSTRUCTION VIA MHR METHOD

The following question is important in mathemat&sl computer sciences: is it possible
to find a method of curve interpolation in the mawithout building the interpolation
polynomials and without mathematical form of therv&? Our paper aims at giving the
positive answer to this question. There existsrsdweell established methods: spline functions
[13], shape-preserving techniques [14], subdivisitgorithms [15], Bezier curves, B-splines,
NURBS [16] and others [12] to overcome difficultiespolynomial interpolation, but matrix
interpolation MHR (based on simple matrix calcuas with low computational costs) seems
to be quite novel in the area of shape reconstmictn comparison MHR method with Bézier
curves, Hermite curves and B-curvé&qpline$ or NURBS one unpleasant feature of these
curves must be mentioned: small change of one ctaaistic point can make big change of
whole reconstructed curve [17]. Such a feature do¢sppear in MHR method [18]. Methods
of curve interpolation based on classical polyndnierpolation: Newton, Lagrange or
Hermite polynomials and spline curves which arecgigse polynomials [19]. Classical
methods are useless to interpolate the functionftia to be differentiable at one point, for
example the absolute value functiigr) = | X atx = 0. If point (0;0) is one of the interpolation
nodes, then precise polynomial interpolation ofdahsolute value function is impossible. Also
when the graph of interpolated function differsnfrthe shape of polynomials considerably, for
example f(x) = 1k, interpolation is very hard because of existingaleextrema of polynomial.
Lagrange interpolation polynomial for functid¢x) = 1k and nodes (5;0.2), (5/3;0.6), (1;1),
(5/7;1.4), (5/9;1.8) has one minimum and two roots.
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Fig. 2. Lagrange interpolation polynomial for nod®®.2), (5/3;0.6), (1;1), (5/7;1.4), (5/9;1.8)
differs extremely from the shape of functigr) = 1k

We cannot forget about the Runge’'s phenomenon: wimerpolation nodes are
equidistance then high-order polynomial oscillatasard the end of the interval, for example
close to -1 and 1 with functioifx) = 1/(1+25¢7) [20] or f(x) = 1/(1+5¢). Method of Hurwitz
— Radon Matrices (MHR), described in this papefrés of these bad features. Complexity of
calculations for one unknown point in Lagrange @wtbn interpolation based annodes is
connected with the computational cost of ra®kn?). Complexity of calculations fol
unknown points in MHR interpolation based omodes is connected with the computational
cost of rankO(L) [18]. This is very important feature of MHR methdlhe curve or function
in MHR method is parameterized for valoed [0;1] in the range of two or more successive
interpolation nodes.
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3.1. The Operator of Hurwitz — Radon

Adolf Hurwitz (1859-1919) and Johann Radon (1883&)%ublished the papers about
specific class of matrices in 1923, working on pineblem of quadratic forms. Matricég
i = 1,2..msatisfying
AAFAA=0, A’=-1 for j#kj k=12.m
are calleda family of Hurwitz - Radon matriceé\ family of Hurwitz - Radon (HR) matrices
has important features [21]: HR matrices are skemrsetric &' = - A) and reverse matrices

are easy to findA™ = - A). Only for dimensionN = 2, 4 or 8 the family of HR matrices
consists oN - 1 matrices. FoN = 2 there is one matrix:

S

ForN = 4 there are three HR matrices with integer estri

0 100 0 0 10 0 00 1
|-100 o0 0 0 01 o o-10
Ai_000—1’Az_—1ooo‘A3_01oo
0 01 O 0 -100 -10 0 0

For N = 8 we have seven HR matrices with elements 0,/3190 far HR matrices are applied
in electronics [22]: in Space-Time Block Coding £8I) and orthogonal design [23], also in
signal processing [24] and Hamiltonian Neural N2§.

If one curve is described by a set of represemtagioints {(.y), i = 1, 2, ...,n}
monotonic in coordinates, then HR matrices combined with identity mattixare used to
build an orthogonal and discrete Hurwitz - Radore@gor (OHR). For nodex(y:), (X2,Y»)
OHRM of dimensionN = 2 is constructed [26]:

B:()(1E|2+X2|]Q1)(y1|:|2—y2|]ﬁl):|:x1 X2:|{y1 _y2:|’leBy

% %]y, % X"+’
M = 1 |:le1+X2y2 X2)/1 _x1y2:|. (1)
x12 + X22 %Yo =X Y1 XY T XY,

Matrix M in (1) is found as a solution of equation:

a biix |_{v| 2
-b ajl|x Y,
For nodesxy,y1), (X,Y2), (X3,¥3), (X4,Y4), monotonic inx, OHR of dimensiomN = 4 is
constructed [26]:

U U U U (3)
1 U U TU U

2 2,2, 2
XX X X5 U U Uy Tl
“Up TU U U
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where Up =X Y1 T XY, T XY XY Up ==X Y, VXY XY, =X, Ys0

Uy ==X Y = XY, ¥ XY H XY, U ==X Y, XY XY, XY

Matrix M in (3) is found as a solution of equation:

a b ¢ dj|x A ()
-b a -d c|Ix%|_|Y,
-¢c d a -bl[x]| |y

-d -¢c b a]|x Ya

For nodes X,y1), (X2,¥2), ..., (Xa,Ys), monotonic inx, OHR of dimensiorN = 8 is built [26]
similarly as (1) or (3). Note that OHR operatbtg1)-(3) satisfy the condition of interpolation

MX =y (5)

for x = (X, Xo... %) O RY, x# 0,y = (yo.yo....yn) ORY,N=2, 4 or 8.

If one curve is described by a set of nodesyj, i = 1, 2, ...,n} monotonic in coordinates
yi, then HR matrices combined with identity matgpare used to build an orthogonal and
discrete reverse Hurwitz - Radon Operator (revexd®) M™. If matrix M in (1)-(3) has form:

Mzﬁg;{%DN+D)

2%

i=1

where matriXD with elements, ..., uy.; and zero diagonal, then reverse OMRis given by:

o )
M* :Ni(UODN _D)-
Z Yi2
i=1
Note that reverse OHR operator (6) satisfies thalitimn of interpolation
MY = x (7)

for x = (X, %o... %) ORY, ¥y = (yu,Y2...yn) ORY, y#0,N=2, 4 or 8.
3.2. MHR method (basic version)

Key question looks as follows: how compute coortiisaf points settled between
interpolation nodes? A set of nodes is the onlgrimiation about curve in basic version of
MHR method. On a segment of a line every numbésituated betweend” and “b” is
described by a linear (convex) combinationa Ca+ (1 -a) [b for

b-c

0 [0;1]. 8
aaleg) ®)

a =
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When the nodes are monotonic in coordinages/erage OHR operatdf, of dimension
N =2, 4 or 8 is constructed as follows [7,26]:

M,=aM,+1-a)M, )

with the operatoMy built (1)-(3) by “odd” nodesxg=a,y1), (Xz,¥a), .-, Xon-1,Yon-1) @andMy built
(2)-(3) by “even” nodesxg=b,y,), (X4,Ya), ---, (on,Yon)- Having the operatdvl, for coordinates
X < Xi:1 it is possible to reconstruct the second coordmateoints X,y) in terms of the vector
C defined with

=gt (1), i=1,2,...N (10)
asC = [Cy, Cy,..., Cy]". The required formula is similar to (5):
Y(C)=M,[C (11)
in which components of vectol(C) give the second coordinate of the pointsy)(
corresponding to the first coordinate, given imterof components of the vect@ On the

other hand, having the operatds™ for coordinates); < y;.; it is possible to reconstruct the
first coordinates of pointx(y) [7,26]:

M, " =aM, +@1-a)M,", Ci=alhq+ (1-0)¥,
X(C)=M,"[C . (12)

Contour of the object is constructed with severahher of curves. Calculation of
unknown coordinates for contour points using (8}(% called by author the method of
Hurwitz - Radon Matrices (MHR). Here is the apptica of basic MHR method for functions
f(x) = 2/x (five nodes equidistance in first coordinate: 0.4, 0.7, 1.0, 1.3, 1.6) and
f(x) = 1/(1+5¢) with five nodes fox = -1, -0.5, 0, 0.5, 1.

*e
o A2
. oHE——
. + *
4 . + +
¢ o 05 *
3 L R .
. o %,
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o *%,
M o ) %0,
1 g = %
0
a) 0 05 1 15 b) 1 05 ] 05 1

Fig. 3. Thirty six interpolated points of functioffs) = 2/ (a) andf(x) = 1/(1+5¢) (b) using
basic MHR method with 5 nodes

Basic version of MHR method preserves monotoniaitg symmetry (Fig.3b) of the graphs.
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3.3. MHR method with parameterk

The curvey = 2/x reconstructed by basic version of MHR method @&y looks not quite
accurate. For better reconstruction of the curpprapriatek O (0;2] in MHR method with
parametek is calculated:

M,=a*M,+1-a")M, 3f1
or M, =a"M,"+@-a")IM,*. (14)

Fork = 1 MHR method (13-14) presents a basic versigh2[9 In the case df > 2 author’s
experiments confirm that models differ from thevas considerably. Choice of paramekes

connected with comparison of precise valugdor function f(x) = 2k in control pointsp;,

situated in the middle between interpolation naaes 0.5):

pizl(xi+xi+1)’ \Nizf(pi)zi’
2 P

and values in control poing computed by MHR method. Control points are setttedhe
middle between interpolation nodes, because inkatipa error of MHR method is the biggest
[6]. Choice of rankk is done by criterion: difference between preciskiesmw; and values
reconstructed by MHR method is the smallest. Copmintsp; in this example are established
for pj = 0.55, 0.85, 1.15, 1.45. Four values of the cuaree compared for various parameter
k O (0;2]. The best result is calculated for 1.565:

| wl - 3637 |+ | w3 - 1624 [+ | w2 - 2278 |+ | wd - 1322 |=0.248
whereas basic versiork £ 1) gives worse result:
| wi— 423 |+ w3- 1700 |+ | w2- 2532 |+ | wd- 1398 | =0822

Reconstruction of the curse= 2k by MHR method (13) with parametkr= 1.565 looks as
follows:

-
-
->
-
-
-
-
-,

3 N
\“\....

Fig. 4. The curve = 2/x modeled via MHR method fder= 1.565 and five nodes together with
36 reconstructed points

Fig.4 represents the curye= 2/ more precisely then Fig.3a. Convexity of recorcizd
curve is very important factor in MHR method. Appriate choice of parametkiis connected
with regulation and controlling of convexity: modelf the curve (Fig.4) preserves
monotonicity and convexity.
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3.4. MHR method for equidistance nodes

Assume that there is odd number of interpolatiodesoky,y1), (X2,¥2),--., Xoke1,Yok+1) N
MHR method k = 2,3,4...,k = const) and all coordinatex; or all coordinatesy; are
equidistance (a fixed step of coordinakeger y;). For example dealing with coordinatewe
have the condition of proportion for first and seddalf of nodesN = 2):

Xt =% — Ko T Xwi P, (15)

Xen =X Xy =™ X

Oi=2,..k:

Valuesp; > ...>pe1 O (0;1) withpy = 1 andp, = 0 are crucial in the process of interpolation.
LetM; (i =0,1,2,...K) is OHR operator of dimensidd = 2 constructed (1) for nodes.{,yi+1)
and Kei+1,Yi+i+1)- Average OHR operatdi,,, is built as follows:

k
M =>'s M. (16)
i=0

Average OHR operatdvl, in basic version (9) is calculated as (16)Ker 1 andp, = 0.
Coefficientss are computed:

s =@ P)(@=P) @7 P)@ = P)-(@2P) (17)
(P = Po)(P; = Py)-- (P = Pi)(Py = Pisa) (P = Py)
X _ k
_ J=OJ¢|(a pJ) ) ZSI =1
S = 4
' K i=0
1 (pi - pj)

for any coordinate; situated betweexy, andx. (first half of nodes) as follows:

Ci=ak+BX.,  for Ep=1-a<1,
X —
g=21"4 [0;1]. (18)
X ~

Vector of second coordinat®C) =[y(c,), y(c,)]" is calculated:

Y(€)= M, Eﬂ =M., Eﬂa[ . }+ (1—a){ Mt }) - (19)
c X1 X

2 k+ 2k+1

Here is the example of average operator (16) f@r fiodes equidistance in coordingte
(X1,Y1), (X2Y2),---, KsYs), K=2,p2 = 0,p1 = ¥2,p0 = 1.
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M =1{xlyl+x3y3 xsyl—xlys} M :1[x2y2+x4y4 x4y2—x2y¢1}
’ X12+X32 XYs = XY XY XY, Xzz"'X42 Xo¥a = XY2 %Yo ¥ XY,

M. = 1 X3Y3 ¥ X5Ys  XsY3 ~X3Ys
27 X32 + X52 X3¥s = XsYs X3Y3 t XsYs .
_(a—O)(a—O.S), _ (a-0)(a-) ' _(a—l)(a—O.S)'
%= 0-0)1-05) 05-0)(05-1) 2~ (0-1)(0-05)

Zzls, :Za(a—;) -4da(a -1 +2(a—1)(a—;):1,

M, :2cr(cr—%)MO -4a(a -)M, +2(a—1)(a—%)M2.

Here is the application of MHR method with equidiste nodes for functidiix)= 1/x and nine
nodes equidistance in second coordinate0.2, 0.4, 0.6, 0.8, 1,1.2, 1.4, 1.6, 1.8.

2
1.8

1a i‘
®

1,2

1 "
08 -~
0,6 .3
0,4 he PN
E * - =
0.2 A

o]

o 1 2 E] 4 5 6

Fig. 5. Twenty two interpolated points of functiffr) = 1/x using MHR method with 9
equidistance nodes

MHR method for equidistance nodes requires thefictsfts s (17) that are computed in
similar way like Lagrange interpolation polynomial.

4. SHAPE COEFFICIENTS

Some of shape coefficients in object recognition @alculated using area of the obj&ct
and length of the contol: For example:

RS: LZ _2\/§RC:£ ——L -1
ars’ R =3 e n’RM'sz '

AreaSis also applied in coefficients of: Blair-BlissaBielsson, compactness [27].

The contour is divided inta curvesCy, C,, ... C,. Having nodesx,v1), (X2,¥2),---» XmnwYm)
for eachC; in MHR method, it is possible to compute as mamye points as we want for any
parametera O [0;1]. Assume thak is the number of reconstructed points togetheh wit
nodes.
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So curveC; consists ok points which are indexed(,y:), (x',¥2),..., (X,¥«'), where
(X, v1) = (Xu,y1) and &,yK) = (XmYm). The length of curveC;, consists ofk points, is
estimated:

d(C) = Y\ 05,5 ~% )+ (YY) (20)

Length of whole contour is computed:
=ld(Cy) +d(Cy) + ... +d(C)). 21)

For example precise length of curve in Fig.3a 848. and length calculated via (20) is
d(C,) = 4.050. Precise length of curve in Fig.3b is78.@and length calculated via (20) is
d(C,) = 2.643.

Area of the object can be divided horizontally ertically into the set off polygons:
triangles, squares, rectangles, trapezoids.

Fig. 6. The object area consists of polygons
Coordinates of corners for each polyg@rare calculated by MHR method and then it is easy

to estimate the area &f. For exampleP; as trapezoid (Fig.7) with cornergy,1), (X1,Y2),
(X2,¥3), (%,Ya). Area of trapezoidP, is computed:

1
S(P:L):E‘XQ_X:L‘ Eﬂ\)’z‘%“\)’f)’a\)' (22)

(x2,y4)

Cxly2)

(xlyl)

[E=85))
Fig. 7. Trapezoid as a part of the object.

Estimation of object are@is given by formula:

|
S=>s(R). (23)
Contour points, calculated by MHR method [18], applied in shape coefficients.
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5. CONCLUSIONS

The method of Hurwitz-Radon Matrices leads to continterpolation and shape
reconstruction depending on the number and locatidn representation points. No
characteristic features of curve are important iHRMmethod: failing to be differentiable at
any point, the Runge’s phenomenon or differencesfthe shape of polynomials. These
features are very significant for classical polyianinterpolations. MHR method gives the
possibility of reconstruction a curve consists efveral parts, for example closed curve
(contour). The only condition is to have a set ofles for each part of a curve or contour
according to assumptions in MHR method. Shape septation and curve reconstruction by
MHR method is connected with possibility of chamginhe nodes coordinates and
reconstruction of new curve or contour for newafetodes, no matter what shape of curve or
contour is to be reconstructed. Main features of RMirhethod are: accuracy of shape
reconstruction depending on number of nodes antiadeof choosing nodes; reconstruction
of curve consists df points is connected with the computational cosaok O(L) [18]; MHR
method preserves monotonicity and symmetry of tha&plys, but convexity not always
(selection of parametéd).

Future works are connected with: geometrical tramsétions of contour (translations,
rotations, scaling)- only nodes are transformed aed curve (for example contour of the
object) for new nodes is reconstructed, possibibtapply MHR method to three-dimensional
curves [26] and connection MHR method with objectognition.
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